论文标题
Cauchy Slice全息图:新广告/CFT词典
Cauchy Slice Holography: A New AdS/CFT Dictionary
论文作者
论文摘要
我们研究了一种在渐近广告空间中的全息方法的新方法,在此时间而不是空间是新兴的维度。通过对欧几里得CFT进行足够大的T^2个性化,我们定义了一种生活在洛伦兹体积的Cauchy片上的全息理论。 (更普遍地,对于关闭的任意哈密顿约束方程,我们展示了如何通过与适当异常的CFT相关变形来获得它。)该理论的分区函数定义了大量的规范量子重力理论希尔伯特空间和未经常规(未达到的)边界CFT之间的自然图。我们主张ADM和CFT哈密顿人的等效性。我们还解释了散装单位性是如何自然出现的,即使边界理论不是反射阳性的。这使我们能够以惠勒·戴维特(Wheeler-Dewitt)规范量子重力的语言重新重新制定全息原理。 在此过程中,我们概述了一个程序,该程序是从与Dirichlet边界条件的重置路径积分中获取散装希尔伯特空间的过程。在以前的猜想之后,我们假设这种有限的切线引力途径积分与生活在任意边界歧管上的T^2型理论一致 - 至少在半经典的方向上。但是,t^2赋予的理论可能更容易完成,在这种情况下,自然而然地将其视为非扰动量子重力的定义。
We investigate a new approach to holography in asymptotically AdS spacetimes, in which time rather than space is the emergent dimension. By making a sufficiently large T^2-deformation of a Euclidean CFT, we define a holographic theory that lives on Cauchy slices of the Lorentzian bulk. (More generally, for an arbitrary Hamiltonian constraint equation that closes, we show how to obtain it by an irrelevant deformation from a CFT with suitable anomalies.) The partition function of this theory defines a natural map between the bulk canonical quantum gravity theory Hilbert space, and the Hilbert space of the usual (undeformed) boundary CFT. We argue for the equivalence of the ADM and CFT Hamiltonians. We also explain how bulk unitarity emerges naturally, even though the boundary theory is not reflection-positive. This allows us to reformulate the holographic principle in the language of Wheeler-DeWitt canonical quantum gravity. Along the way, we outline a procedure for obtaining a bulk Hilbert space from the gravitational path integral with Dirichlet boundary conditions. Following previous conjectures, we postulate that this finite-cutoff gravitational path integral agrees with the T^2-deformed theory living on an arbitrary boundary manifold -- at least near the semiclassical regime. However, the T^2-deformed theory may be easier to UV complete, in which case it would be natural to take it as the definition of nonperturbative quantum gravity.