论文标题

无限条纹的前图域的数值计算

Numerical computation of a preimage domain for an infinite strip with rectilinear slits

论文作者

Kalmoun, El Mostafa, Nasser, Mohamed M. S., Vuorinen, Matti

论文摘要

让$ω$为扩展复杂平面$ \叠加{\ c} $中的多重连接域,通过从无限条带$ s = \ s = \ {z \,:\,\,\,\,\,\ weft | im z \ im z \ right | right |<π/2 $ \ from s = \ {z \,:s = \ {z \,:在本文中,我们提出了一种迭代方法,用于计算单位磁盘$ \ d $的内部和$ M $非重叠的平滑Jordan Curves的内部内部中的形式等效的乘数乘数$ g $的数值计算。我们通过两种应用证明了该方法的实用性。首先,我们估计$(s,e)$的冷凝器的能力,其中$ e \ subset s $是不连接部分的结合。其次,我们确定与不可压缩的,无关紧要的和无关的流相关的流线,超过了$ s $中的不连接段。

Let $Ω$ be the multiply connected domain in the extended complex plane $\overline{\C}$ obtained by removing $m$ non-overlapping rectilinear segments from the infinite strip $S=\{z\,:\, \left|\Im z\right|<π/2\}$. In this paper, we present an iterative method for numerical computation of a conformally equivalent bounded multiply connected domain $G$ in the interior of the unit disk $\D$ and the exterior of $m$ non-overlapping smooth Jordan curves. We demonstrate the utility of the proposed method through two applications. First, we estimate the capacity of condensers of the form $(S,E)$ where $E\subset S$ be a union of disjoint segments. Second, we determine the streamlines associated with uniform incompressible, inviscid and irrotational flow past disjoint segments in the strip $S$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源