论文标题
部分可观测时空混沌系统的无模型预测
A Weak Galerkin Mixed Finite Element Method for second order elliptic equations on 2D Curved Domains
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This article concerns the weak Galerkin mixed finite element method (WG-MFEM) for second order elliptic equations on 2D domains with curved boundary. The Neumann boundary condition is considered since it becomes the essential boundary condition in this case. It is well-known that the discrepancy between the curved physical domain and the polygonal approximation domain leads to a loss of accuracy for discretization with polynomial order $α>1$. The purpose of this paper is two-fold. First, we present a detailed error analysis of the original WG-MFEM for solving problems on curved domains, which exhibits an $O(h^{1/2})$ convergence for all $α\ge 1$. It is a little surprising to see that even the lowest-order WG-MFEM ($α=1$) experiences a loss of accuracy. This is different from known results for the finite element method (FEM) or the mixed FEM, and appears to be a combined effect of the WG-MFEM design and the fact that the outward normal vector on the polygonal approximation domain is different from the one on the curved domain. Second, we propose a remedy to bring the approximation rate back to optimal by employing two techniques. One is a specially designed boundary correction technique. The other is to take full advantage of the nice feature that weak Galerkin discretization can be defined on polygonal meshes, which allows the curved boundary to be better approximated by multiple short edges without increasing the total number of mesh elements. Rigorous analysis shows that a combination of the above two techniques renders optimal convergence for all $α$. Numerical results further confirm this conclusion.