论文标题

使用无监督聚类优化深度学习模型,以预测基因突变

Optimize Deep Learning Models for Prediction of Gene Mutations Using Unsupervised Clustering

论文作者

Chen, Zihan, Li, Xingyu, Yang, Miaomiao, Zhang, Hong, Xu, Xu Steven

论文摘要

深度学习已成为分析和解释全扫描数字病理图像(WSIS)的主流方法论选择。通常认为肿瘤区域携带大多数预测性信息。在本文中,我们提出了一种无监督的基于聚类的多种构度学习,并应用我们的方法开发了研究深度学习模型,用于使用来自癌症基因组图集(TCGA)研究(CRC,LUAD,LUAD和HNSCC)的三种癌症类型的WSI来预测基因突变。我们表明,与基于WSI的方法相比,与仅基于肿瘤区域的图像斑块和模型相比,无监督的图像斑块可以帮助识别预测性斑块,排除缺乏预测性信息,从而改善对所有三种不同癌症类型的基因突变的预测。此外,我们提出的算法的表现优于最近发表的两种基线算法利用无监督聚类来协助模型预测。基于无监督的聚类预测方法可以通过解决的概率得分来鉴定与特定基因突变有关的空间区域,从而突出了肿瘤微环境中预测基因型的异质性。最后,我们的研究还表明,WSI的肿瘤区域的选择并不总是鉴定预测基因突变斑块的最佳方法,而肿瘤微环境中的其他组织类型可能比肿瘤组织提供更好的基因突变预测能力。

Deep learning has become the mainstream methodological choice for analyzing and interpreting whole-slide digital pathology images (WSIs). It is commonly assumed that tumor regions carry most predictive information. In this paper, we proposed an unsupervised clustering-based multiple-instance learning, and apply our method to develop deep-learning models for prediction of gene mutations using WSIs from three cancer types in The Cancer Genome Atlas (TCGA) studies (CRC, LUAD, and HNSCC). We showed that unsupervised clustering of image patches could help identify predictive patches, exclude patches lack of predictive information, and therefore improve prediction on gene mutations in all three different cancer types, compared with the WSI based method without selection of image patches and models based on only tumor regions. Additionally, our proposed algorithm outperformed two recently published baseline algorithms leveraging unsupervised clustering to assist model prediction. The unsupervised-clustering-based approach for mutation prediction allows identification of the spatial regions related to mutation of a specific gene via the resolved probability scores, highlighting the heterogeneity of a predicted genotype in the tumor microenvironment. Finally, our study also demonstrated that selection of tumor regions of WSIs is not always the best way to identify patches for prediction of gene mutations, and other tissue types in the tumor micro-environment may provide better prediction ability for gene mutations than tumor tissues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源