论文标题
在玻尔兹曼平衡处的骨量子场的有限相相干时间
Finite phase coherence time of a bosonic quantum field at the Boltzmann equilibrium
论文作者
论文摘要
提出了一种具有非本地阶参数的定量量子场方法,用于一种非常弱相互作用的稀释bose气体。在所呈现的模型中,在规范合奏中假定粒子数的限制在恒定平均能量下的限制,这表明两个相干振荡以及量子相干性的衰减时间是由量子场的前向和向后传播组成的量子组成部分由由原子相互作用的bose-neinstein condensate condensate condensate condensate condensate condensate condensate condensate condensate condence condence condence condence condence的独特时间独特。在目前的数值理论中,对粒子在非常弱的bose气体中的时间传播的定量估计值源自波场的相干时间,并说明,该时间尺度定义了玻尔兹曼平衡的不同实现之间的过渡单位时间,这是玻尔茨曼平衡的最大范围所定义的,这是从化学效能中所定义的。
A quantitative quantum field approach with non-local order parameters is presented for a very weakly interacting, dilute Bose gas. Within the presented model, which assumes the constraint of particle number conservation at constant average energy in the canonical ensemble, it is shown that both coherent oscillations, as well as decay times of quantum coherence for the forward and backward propagating components of the quantum field created by the atomic cloud of a very weakly interacting Bose-Einstein condensate, are defined by a unique time variable. Within the present numerical theory, a quantitative estimate for the unit time scale for time propagation of a particle in a very weakly interacting Bose gas is derived from the coherence time of the wave field and it is illustrated that this time scale defines a unit time for transitions between different realizations of the Boltzmann equilibrium as defined by the maximum entropy from the vanishing of the chemical potential.