论文标题
行星跨越时空(过去)。 iii。行星半径谷的形态与lamost-gaia-kepler样品所揭示的银河系中的恒星年龄和金属性的关系
Planets Across Space and Time (PAST). III. Morphology of the Planetary Radius Valley as a Function of Stellar Age and Metallicity in the Galactic Context Revealed by the LAMOST-Gaia-Kepler Sample
论文作者
论文摘要
半径谷,在〜1.9地球半径的系外行星的半径分布中倾斜,将紧凑的岩石上的超级岩石和较低密度的子纳普分离。提出了各种假设来解释半径谷。表征半径谷的形态及其与恒星特性的相关性将对其起源机理产生至关重要的观察约束,并加深对行星形成和进化的理解。在本文中,使用Lamost-Gaia-cepler目录中的整个时空(过去)系列的行星的第三部分,我们对半径谷形态如何在银河系中(即薄/厚的银河盘,恒星年龄和金属含量(Fe/hif/fe/h]和[Alpha)和[Alpha/[Alpha/pha)而进行了系统的研究。我们发现(1)随着年龄和[Fe/H]的增加,山谷变得更加突出。 (2)超产量与亚核的数量比单调增加,但随着[fe/h]和[alpha/fe]的降低。 (3)山谷上方行星的平均半径(2.1-6地球半径)随着年龄的增长而减小,但随[Fe/H]的增加。 (4)相比之下,山谷以下行星的平均半径(r <1.7地球半径)在年龄和金属性上广泛独立。我们的结果表明,山谷的形态以及整个行星半径分布在长期以来的GIGA年度和金属度(不仅是FE,而且还不仅是其他金属元素)演变而成,例如Mg,SI,SI,CA,CA,TI)在行星形成和长期行星进化中起着重要作用。
The radius valley, a dip in the radius distribution of exoplanets at ~1.9 Earth radii separates compact rocky Super-Earths and Sub-Neptunes with lower density. Various hypotheses have been put forward to explain the radius valley. Characterizing the radius valley morphology and its correlation to stellar properties will provide crucial observation constraints on its origin mechanism and deepen the understanding of planet formation and evolution. In this paper, the third part of the Planets Across the Space and Time (PAST) series, using the LAMOST-Gaia-Kepler catalog, we perform a systematical investigation into how the radius valley morphology varies in the Galactic context, i.e., thin/thick galactic disks, stellar age and metallicity abundance ([Fe/H] and [alpha/Fe]). We find that (1) The valley becomes more prominent with the increase of both age and [Fe/H]. (2) The number ratio of super-Earths to sub-Neptunes monotonically increases with age but decreases with [Fe/H] and [alpha/Fe]. (3) The average radius of planets above the valley (2.1-6 Earth radii) decreases with age but increases with [Fe/H]. (4) In contrast, the average radius of planets below the valley (R < 1.7 Earth radii) is broadly independent on age and metallicity. Our results demonstrate that the valley morphology as well as the whole planetary radius distribution evolves on a long timescale of giga-years, and metallicities (not only Fe but also other metal elements, e.g., Mg, Si, Ca, Ti) play important roles in planet formation and in the long term planetary evolution.