论文标题
使用稀疏建模在外地球上表面成分的全局映射
Global Mapping of Surface Composition on an Exo-Earth Using Sparse Modeling
论文作者
论文摘要
未来直接成像从系外行星反射的光的时间序列可以提供有关行星表面的空间信息。我们将稀疏建模应用于检索方法,该方法将空间和光谱信息从称为自旋轨道固定的多波段反射光曲线中分离出来。我们使用$ \ ell_1 $ -norm和总平方变化标准作为表面分布的正则化项。将我们的技术应用于无云地球的玩具模型,我们表明我们的方法可以推断出稀疏,连续的表面分布,也可以在没有地球表面的事先了解的情况下推断出稀疏而连续的光谱。我们还将技术应用于DSCOVR/EPIC观察到的真实地球数据。我们确定了可以解释为云和海洋的代表性组件。此外,我们发现了两个类似于土地分布的组件。其中一个组件捕获了撒哈拉沙漠,另一个大致与植被相对应,尽管它们的光谱仍然被云污染。与使用Tikhonov正则化相比,稀疏建模显着改善了云的地理检索,尤其是云的地理检索,并导致其他组件的分辨率更高。
The time series of light reflected from exoplanets by future direct imaging can provide spatial information with respect to the planetary surface. We apply sparse modeling to the retrieval method that disentangles the spatial and spectral information from multi-band reflected light curves termed as spin-orbit unmixing. We use the $\ell_1$-norm and the Total Squared Variation norm as regularization terms for the surface distribution. Applying our technique to a toy model of cloudless Earth, we show that our method can infer sparse and continuous surface distributions and also unmixed spectra without prior knowledge of the planet surface. We also apply the technique to the real Earth data as observed by DSCOVR/EPIC. We determined the representative components that can be interpreted as cloud and ocean. Additionally, we found two components that resembled the distribution of land. One of the components captures the Sahara Desert, and the other roughly corresponds to vegetation although their spectra are still contaminated by clouds. Sparse modeling significantly improves the geographic retrieval, in particular, of cloud and leads to higher resolutions for other components when compared with spin-orbit unmixing using Tikhonov regularization.