论文标题
关于最佳控制的表示公式:拉格朗日的观点
On representation formulas for optimal control: A Lagrangian perspective
论文作者
论文摘要
在本文中,我们研究了有或没有状态限制的有限摩恩最佳控制问题的表示公式,统一了两个不同的观点:拉格朗日和动态编程(DP)框架。在最近的工作[1]中,通过DP获得了广义的LAX公式,以解决状态约束和非线性系统的最佳控制问题。我们从拉格朗日角度重新审视该公式,以提供一个统一的框架,以理解和实施价值函数的非平凡表示。我们的简单推论直接利用了汉密尔顿 - 雅各比(HJ)方程理论的拉格朗日公式。我们还讨论了使用$δ$ -NET构建最佳控制的严格方法,以及通过凸优化的控制器合成的数值方案。
In this paper, we study representation formulas for finite-horizon optimal control problems with or without state constraints, unifying two different viewpoints: the Lagrangian and dynamic programming (DP) frameworks. In a recent work [1], the generalized Lax formula is obtained via DP for optimal control problems with state constraints and nonlinear systems. We revisit the formula from the Lagrangian perspective to provide a unified framework for understanding and implementing the nontrivial representation of the value function. Our simple derivation makes direct use of the Lagrangian formula from the theory of Hamilton-Jacobi (HJ) equations. We also discuss a rigorous way to construct an optimal control using a $δ$-net, as well as a numerical scheme for controller synthesis via convex optimization.