论文标题
无结构的可验证量子优势
Verifiable Quantum Advantage without Structure
论文作者
论文摘要
除非另有说明,否则我们在无条件的情况下显示以下持有:相对于随机的Oracle: - 量子多项式时间机器可以解决NP搜索问题,而不是经典的概率多项式计算机。 - 存在对经典对手的单向甚至抗碰撞的功能,但很容易倒数。数字签名和CPA安全公共密钥加密(后者需要经典的CPA安全加密方案)的类似分离。有趣的是,分离不一定扩展到其他加密对象(例如PRG)的情况。 - 有无条件的公开验证证明量子性的证明,互动的最低段:对于统一的对手,证明是非交互的,而对于非统一对手来说,证明是两个消息公共硬币。 - 我们的结果似乎与Aaronson-Bambanis的猜想并不矛盾。假设这一猜想是可以公开可证明的随机性,而相互作用的互动也很少。 通过用诸如SHA2之类的具体加密哈希函数替换随机甲骨文,我们获得了上述结果的合理微型晶体实例。先前的类似结果都需要实质性的结构,无论是在高度结构化的甲壳和/或代数假设方面,都需要隐秘的植物及其他结构。
We show the following hold, unconditionally unless otherwise stated, relative to a random oracle: - There are NP search problems solvable by quantum polynomial-time machines but not classical probabilistic polynomial-time machines. - There exist functions that are one-way, and even collision resistant, against classical adversaries but are easily inverted quantumly. Similar separations hold for digital signatures and CPA-secure public key encryption (the latter requiring the assumption of a classically CPA-secure encryption scheme). Interestingly, the separation does not necessarily extend to the case of other cryptographic objects such as PRGs. - There are unconditional publicly verifiable proofs of quantumness with the minimal rounds of interaction: for uniform adversaries, the proofs are non-interactive, whereas for non-uniform adversaries the proofs are two message public coin. - Our results do not appear to contradict the Aaronson-Ambanis conjecture. Assuming this conjecture, there exist publicly verifiable certifiable randomness, again with the minimal rounds of interaction. By replacing the random oracle with a concrete cryptographic hash function such as SHA2, we obtain plausible Minicrypt instantiations of the above results. Previous analogous results all required substantial structure, either in terms of highly structured oracles and/or algebraic assumptions in Cryptomania and beyond.