论文标题

基于分解的层次变异自动编码器的分解语音表示学习,并具有自我监管的目标

Disentangled Speech Representation Learning Based on Factorized Hierarchical Variational Autoencoder with Self-Supervised Objective

论文作者

Xie, Yuying, Arildsen, Thomas, Tan, Zheng-Hua

论文摘要

解开的表示学习旨在提取解释性特征或因素并保留显着信息。分解的分层变分自动编码器(FHVAE)提出了一种将语音信号分别分别为顺序级别和分段级特征的方法,这些特征分别代表说话者的身份和语音内容信息。另一方面,作为一个自制的目标,自回归预测性编码(APC)已用于为多个下游任务提取有意义且可转移的语音特征。受这两种表示学习方法成功的启发,本文提议将APC目标整合到FHVAE框架中,以使其受益于其他自学目标。所提出的主要方法既不需要更多的培训数据,也不需要在测试时间内更多的计算成本,而是在保持分离的同时获得了改进的有意义的表示。实验是在TIMIT数据集上进行的。结果表明,配备了其他自我监督目标的FHVAE能够学习为任务提供卓越性能在内的功能,包括语音识别和扬声器识别。此外,已经应用和评估了语音转换,作为分解表示学习的一种应用。结果显示性能类似于语音转换的新框架的基线。

Disentangled representation learning aims to extract explanatory features or factors and retain salient information. Factorized hierarchical variational autoencoder (FHVAE) presents a way to disentangle a speech signal into sequential-level and segmental-level features, which represent speaker identity and speech content information, respectively. As a self-supervised objective, autoregressive predictive coding (APC), on the other hand, has been used in extracting meaningful and transferable speech features for multiple downstream tasks. Inspired by the success of these two representation learning methods, this paper proposes to integrate the APC objective into the FHVAE framework aiming at benefiting from the additional self-supervision target. The main proposed method requires neither more training data nor more computational cost at test time, but obtains improved meaningful representations while maintaining disentanglement. The experiments were conducted on the TIMIT dataset. Results demonstrate that FHVAE equipped with the additional self-supervised objective is able to learn features providing superior performance for tasks including speech recognition and speaker recognition. Furthermore, voice conversion, as one application of disentangled representation learning, has been applied and evaluated. The results show performance similar to baseline of the new framework on voice conversion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源