论文标题
经典密度功能理论中的原始模型:超出标准均值近似值
The Primitive Model in Classical Density Functional Theory: Beyond the Standard Mean-Field Approximation
论文作者
论文摘要
原始模型通过点电荷描述了离子,并具有额外的硬核交互作用。在经典的密度功能理论中,平均场静电贡献可以从对硬球的无带电参考系统的功能扰动的一阶获得。该平均场静电期限特别是由于硬核重叠而被禁止的粒子分离。在这项工作中,我们修改了平均场贡献,以便对小于离子的接触距离的距离稳定。我们通过潜在的潜在分裂来激励我们的修改,这与周围的官能系统围绕参考系统的函数扩展,这与周几周的chandler-andersen潜力的分裂相似。由此产生的形式主义涉及加权密度,类似于基本测量理论中的形式。为了测试我们的修改,我们通过广泛建立的总和规则和适用于我们修改的功能,用于既定功能的功能,以及来自计算机模拟的数据,分析和比较功能的密度曲线,直接和总相关函数以及功能的热力学一致性。我们发现,与标准的平均场功能相比,我们的修改明显显示出改进,尤其是在预测高浓度场景中的分层效应和直接相关函数时;对于后者,当通过不同的热力学途径计算时,我们还发现一致性提高。总而言之,我们证明了如何对高阶校正进行均值之外的高阶校正以及如何执行方式进行修改,从而为静电相互作用描述的经典密度功能理论提供了系统的未来改进的基础。
The primitive model describes ions by point charges with an additional hard-core interaction. In classical density-functional theory the mean-field electrostatic contribution can be obtained from the first order of a functional perturbation of the pair potential for an uncharged reference system of hard spheres. This mean-field electrostatic term particularly contributes at particle separations that are forbidden due to hard-core overlap. In this work we modify the mean-field contribution such that the pair potential is constant for distances smaller than the contact distance of the ions. We motivate our modification by the underlying splitting of the potential, which is similar to the splitting of the Weeks-Chandler-Andersen potential and leads to higher-order terms in the respective expansion of the functional around the reference system. The resulting formalism involves weighted densities similar to the ones found in fundamental measure theory. To test our modifications, we analyze and compare density profiles, direct and total correlation functions, and the thermodynamic consistency of the functional via a widely established sum rule and the virial pressure formula for our modified functional, for established functionals, and for data from computer simulations. We found that our modifications clearly show improvements compared to the standard mean-field functional, especially when predicting layering effects and direct correlation functions in high concentration scenarios; for the latter we also find improved consistency when calculated via different thermodynamic routes. In conclusion, we demonstrate how modifications towards higher order corrections beyond mean-field functionals can be made and how they perform, by this providing a basis for systematic future improvements in classical density-functional theory for the description of electrostatic interactions.