论文标题

SE(3) - 功能空间中形状重建的等级注意网络

SE(3)-Equivariant Attention Networks for Shape Reconstruction in Function Space

论文作者

Chatzipantazis, Evangelos, Pertigkiozoglou, Stefanos, Dobriban, Edgar, Daniilidis, Kostas

论文摘要

我们提出了一种从无调点云中重建3D形状的方法。我们的方法由一个新型的SE(3)基于坐标的网络(TF-Onet)组成,该网络参数形状的占用场并尊重问题的固有对称性。与以前的形状重建方法相反,将输入与常规网格对齐,我们直接在不规则的点云上工作。我们的架构利用在本地令牌上运行的均值注意层。这种机制使局部形状建模,这是对大型场景的可扩展性的关键属性。给定一个无方向的,稀疏,嘈杂的点云作为输入,我们为每个点产生e象特征。这些用作随后对占用场的参数性的跨注意区块的键和值。通过查询空间任意点,我们预测其占用分数。我们表明,我们的方法的表现优于以前的SO(3) - 等级方法,以及在SO(3)授权数据集中训练的非等级方法。更重要的是,本地建模与SE(3) - 均衡使SE(3)场景重建创建理想的设置。我们表明,通过仅在单个,对齐的对象上进行训练,而没有任何预分段,我们可以重建包含随机姿势任意多个对象的新型场景而不会造成任何性能损失。

We propose a method for 3D shape reconstruction from unoriented point clouds. Our method consists of a novel SE(3)-equivariant coordinate-based network (TF-ONet), that parametrizes the occupancy field of the shape and respects the inherent symmetries of the problem. In contrast to previous shape reconstruction methods that align the input to a regular grid, we operate directly on the irregular point cloud. Our architecture leverages equivariant attention layers that operate on local tokens. This mechanism enables local shape modelling, a crucial property for scalability to large scenes. Given an unoriented, sparse, noisy point cloud as input, we produce equivariant features for each point. These serve as keys and values for the subsequent equivariant cross-attention blocks that parametrize the occupancy field. By querying an arbitrary point in space, we predict its occupancy score. We show that our method outperforms previous SO(3)-equivariant methods, as well as non-equivariant methods trained on SO(3)-augmented datasets. More importantly, local modelling together with SE(3)-equivariance create an ideal setting for SE(3) scene reconstruction. We show that by training only on single, aligned objects and without any pre-segmentation, we can reconstruct novel scenes containing arbitrarily many objects in random poses without any performance loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源