论文标题

将Perron树应用于几何最大运算符

Application of Perron Trees to Geometric Maximal Operators

论文作者

Gauvan, Anthony

论文摘要

We characterize the $L^p(\mathbb{R}^2)$ boundeness of the geometric maximal operator $M_{a,b}$ associated to the basis $\mathcal{B}_{a,b}$ ($a,b > 0$) which is composed of rectangles $R$ whose eccentricity and orientation is of the form $$\left( e_R ,ω_r\ right)= \ left(\ frac {1} {n^a},\fracπ{4n^b} \ right)$$ in \ in \ mathbb {n}^*$ in \ mathbb in \ mathbb in \ mathbb in。证明涉及\ textit {概括的perron树},如\ cite {kathryn jan}中构建。

We characterize the $L^p(\mathbb{R}^2)$ boundeness of the geometric maximal operator $M_{a,b}$ associated to the basis $\mathcal{B}_{a,b}$ ($a,b > 0$) which is composed of rectangles $R$ whose eccentricity and orientation is of the form $$\left( e_R ,ω_R \right) = \left( \frac{1}{n^a} , \fracπ{4n^b} \right)$$ for some $n \in \mathbb{N}^*$. The proof involves \textit{generalized Perron trees}, as constructed in \cite{KATHRYN JAN}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源