论文标题

Showface:与内存 - 访问的改进网络的协调面孔

ShowFace: Coordinated Face Inpainting with Memory-Disentangled Refinement Networks

论文作者

Wu, Zhuojie, Qi, Xingqun, Wang, Zijian, Zhou, Wanting, Yuan, Kun, Sun, Muyi, Sun, Zhenan

论文摘要

面部介绍旨在完成面部图像的损坏区域,这需要在完整的区域和未腐败的区域之间进行协调。最近,以内存为导向的方法通过引入外部存储模块来改善图像协调,以说明了与生成相关任务的巨大前景。但是,这种方法在恢复特定语义部分的一致性和连续性方面仍然存在局限性。在本文中,我们提出了用于协调面部介入的粗到精细的内存 - 符合性的细化网络(MDRNET),其中两个协作模块被整合,分散的存储器模块(DMM)和面具区域增强了模块(MEREM)。具体而言,DMM建立了一组分离的内存块来存储语义耦合的面部表示,这可以提供最相关的信息来完善语义级别的协调。 MREM涉及一种掩盖的相关挖掘机制,以增强特征关系到损坏的区域,这也可以弥补由记忆分离引起的相关损失。此外,为了更好地改善损坏区域和未腐败区域之间的协调性,并增强了损坏区域内的内部协调性,我们设计了INCO2损失,这是基于相似性的损失,以限制特征一致性。最终,在Celeba-HQ和FFHQ数据集上进行的广泛实验证明了我们的MDRNET的优势与以前的最新方法相比。

Face inpainting aims to complete the corrupted regions of the face images, which requires coordination between the completed areas and the non-corrupted areas. Recently, memory-oriented methods illustrate great prospects in the generation related tasks by introducing an external memory module to improve image coordination. However, such methods still have limitations in restoring the consistency and continuity for specificfacial semantic parts. In this paper, we propose the coarse-to-fine Memory-Disentangled Refinement Networks (MDRNets) for coordinated face inpainting, in which two collaborative modules are integrated, Disentangled Memory Module (DMM) and Mask-Region Enhanced Module (MREM). Specifically, the DMM establishes a group of disentangled memory blocks to store the semantic-decoupled face representations, which could provide the most relevant information to refine the semantic-level coordination. The MREM involves a masked correlation mining mechanism to enhance the feature relationships into the corrupted regions, which could also make up for the correlation loss caused by memory disentanglement. Furthermore, to better improve the inter-coordination between the corrupted and non-corrupted regions and enhance the intra-coordination in corrupted regions, we design InCo2 Loss, a pair of similarity based losses to constrain the feature consistency. Eventually, extensive experiments conducted on CelebA-HQ and FFHQ datasets demonstrate the superiority of our MDRNets compared with previous State-Of-The-Art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源