论文标题

合并树的分支分解与编辑距离

Branch Decomposition-Independent Edit Distances for Merge Trees

论文作者

Wetzels, Florian, Leitte, Heike, Garth, Christoph

论文摘要

标量字段的合并树之间的编辑距离在科学可视化中具有许多应用,例如集合分析,功能跟踪或对称性检测。在本文中,我们提出了分支映射,这是一种用于合并树木的编辑映射的新方法。经典的编辑映射将两棵树的节点或边缘匹配,因此必须依靠两种树的分支分解,或者必须使用辅助节点属性来确定匹配。相反,分支映射采用分支属性而不是节点相似性信息,并且与预定的分支分解无关。特别是对于通常基于分支特性的拓扑特征,这允许更直观的距离度量,该距离也不太容易受到小规模扰动的不稳定性的影响。我们描述了用于计算最佳分支映射的四分之一的运行时算法,该算法比文献中唯一的其他分支分解方法要快得多,而不是线性因子。此外,我们将方法的结果比较了合成和现实世界的示例,以证明其实用性和效用。

Edit distances between merge trees of scalar fields have many applications in scientific visualization, such as ensemble analysis, feature tracking or symmetry detection. In this paper, we propose branch mappings, a novel approach to the construction of edit mappings for merge trees. Classic edit mappings match nodes or edges of two trees onto each other, and therefore have to either rely on branch decompositions of both trees or have to use auxiliary node properties to determine a matching. In contrast, branch mappings employ branch properties instead of node similarity information, and are independent of predetermined branch decompositions. Especially for topological features, which are typically based on branch properties, this allows a more intuitive distance measure which is also less susceptible to instabilities from small-scale perturbations. We describe a quartic runtime algorithm for computing optimal branch mappings, which is faster than the only other branch decomposition-independent method in the literature by more than a linear factor. Furthermore, we compare the results of our method on synthetic and real-world examples to demonstrate its practicality and utility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源