论文标题

保证通用概率编程中后推断的界限

Guaranteed Bounds for Posterior Inference in Universal Probabilistic Programming

论文作者

Beutner, Raven, Ong, Luke, Zaiser, Fabian

论文摘要

我们提出了一种新方法,通过计算保证界限来近似概率程序的后验分布。我们工作的起点是一种基于间隔的痕量语义,用于具有连续分布的递归,高阶概率的编程语言。采用(超级/亚辅助)措施的形式,这些上限/上限是非策略且可证明的:使用语义,我们证明给定程序的实际后端是在下层和上限之间夹在(声音)之间的;此外,边界会融合到后部(完整性)。作为一个实用和声音近似,我们引入了一个重量吸引的间隔类型系统,该系统不仅会同时在返回值上,而且还可以同时在程序执行的重量上添加间隔界限。我们已经建立了一个称为GUBPI的工具实现,该工具将自动计算这些后下限/上限。我们对文献示例的评估表明,边界很有用,甚至可以用来识别随机后推理过程中的错误输出。

We propose a new method to approximate the posterior distribution of probabilistic programs by means of computing guaranteed bounds. The starting point of our work is an interval-based trace semantics for a recursive, higher-order probabilistic programming language with continuous distributions. Taking the form of (super-/subadditive) measures, these lower/upper bounds are non-stochastic and provably correct: using the semantics, we prove that the actual posterior of a given program is sandwiched between the lower and upper bounds (soundness); moreover the bounds converge to the posterior (completeness). As a practical and sound approximation, we introduce a weight-aware interval type system, which automatically infers interval bounds on not just the return value but also weight of program executions, simultaneously. We have built a tool implementation, called GuBPI, which automatically computes these posterior lower/upper bounds. Our evaluation on examples from the literature shows that the bounds are useful, and can even be used to recognise wrong outputs from stochastic posterior inference procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源