论文标题

换位图的光谱

Spectrum of the Transposition graph

论文作者

Konstantinova, Elena V., Kravchuk, Artem

论文摘要

换位图$ t_n $定义为所有转置生成的对称组上的Cayley图。众所周知,$ t_n $的所有特征值都是整数。但是,对频谱的明确描述是未知的。在本文中,我们证明,对于任何整数$ k \ geqslant 0 $,存在$ n_0 $,因此对于任何$ n \ geqslant n_0 $和任何$ m \ in \ {0,\ dots,k \} $,$ m $,$ m $是$ t_n $的eigenvalue。特别是,事实证明,对于任何$ n \ neq2 $,零是$ t_n $的特征值,而对于任何奇数$ n \ geqslant 7 $,对于任何$ n \ n \ geqslant 14 $而言,一个是$ t_n $的特征值。我们还提供了$ t_n $的第三和第四大特征值的精确值。

Transposition graph $T_n$ is defined as a Cayley graph over the symmetric group generated by all transpositions. It is known that all eigenvalues of $T_n$ are integers. However, an explicit description of the spectrum is unknown. In this paper we prove that for any integer $k\geqslant 0$ there exists $n_0$ such that for any $n\geqslant n_0$ and any $m \in \{0, \dots, k\}$, $m$ is an eigenvalue of $T_n$. In particular, it is proved that zero is an eigenvalue of $T_n$ for any $n\neq2$, and one is an eigenvalue of $T_n$ for any odd $n\geqslant 7$ and for any even $n \geqslant 14$. We also present exact values of the third and the fourth largest eigenvalues of $T_n$ with their multiplicities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源