论文标题

分析一类全球无差异HDG方法用于固定Navier-Stokes方程

Analysis of a class of globally divergence-free HDG methods for stationary Navier-Stokes equations

论文作者

Chen, Gang, Xie, Xiaoping

论文摘要

本文分析了一类无差异(以及因此压力)杂交不连续的盖尔金(HDG)有限元方法的固定纳维尔 - 斯托克斯方程的有限元方法。该方法使用$ \ MATHCAL {p} _ {k}/\ MATHCAL {P} _ {K-1} $(K \ GEQ1)$不连续的有限元组合,用于元素内部的速度和压力近似,以及元素内部的压力近似值,以及零件$ \ nathcal $ \ nathcal} $ {对于速度和元素间边界上的压力的迹线。结果表明,对于连续解决方案的唯一条件,可以用足够小的网格尺寸来保证它的唯一条件。基于派生的离散HDG Sobolev嵌入性能,获得了最佳误差估计。进行数值实验以验证理论分析。

This paper analyzes a class of globally divergence-free (and therefore pressure-robust) hybridizable discontinuous Galerkin (HDG) finite element methods for stationary Navier-Stokes equations. The methods use the $\mathcal{P}_{k}/\mathcal{P}_{k-1}$ $(k\geq1)$ discontinuous finite element combination for the velocity and pressure approximations in the interior of elements, and piecewise $\mathcal{P}_k/\mathcal{P}_{k}$ for the trace approximations of the velocity and pressure on the inter-element boundaries. It is shown that the uniqueness condition for the discrete solution is guaranteed by that for the continuous solution together with a sufficiently small mesh size. Based on the derived discrete HDG Sobolev embedding properties, optimal error estimates are obtained. Numerical experiments are performed to verify the theoretical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源