论文标题
$ k $ - 理论的动机光谱和普遍性
Motivic spectra and universality of $K$-theory
论文作者
论文摘要
我们在广泛的一般性中发展了动机谱理论。特别是$ \ mathbb {a}^1 $ - homotopy不变性。作为一个应用程序,我们证明了$ k $ - 方案理论是一种通用的Zariski Spectra,它配备了Picard堆栈的动作并满足了投影捆绑包的配方。
We develop a theory of motivic spectra in a broad generality; in particular $\mathbb{A}^1$-homotopy invariance is not assumed. As an application, we prove that $K$-theory of schemes is a universal Zariski sheaf of spectra which is equipped with an action of the Picard stack and satisfies projective bundle formula.