论文标题

任务感知的内窥镜图像分析的主动学习

Task-Aware Active Learning for Endoscopic Image Analysis

论文作者

Thapa, Shrawan Kumar, Poudel, Pranav, Bhattarai, Binod, Stoyanov, Danail

论文摘要

息肉的语义分割和深度估计是内窥镜图像分析中的两个重要研究问题。对这些研究问题进行研究的主要障碍之一是缺乏注释数据。内窥镜注释需要专家内镜医生的专业知识,因此,很难组织,昂贵且耗时。为了解决这个问题,我们通过选择最歧视性和最多样化的未标记示例来考虑该任务来研究一个主动学习范式,以减少培训示例的数量。大多数现有的主动学习管道本质上都是任务不可能的,通常是最终任务的最佳选择。在本文中,我们提出了一种新型的任务感知的主动学习管道,并应用于内窥镜图像分析中的两个重要任务:语义分割和深度估计。我们将我们的方法与竞争基线进行了比较。从实验结果中,我们观察到了比较基线的实质性改善。代码可在https://github.com/thetna/endo-active-learn上找到。

Semantic segmentation of polyps and depth estimation are two important research problems in endoscopic image analysis. One of the main obstacles to conduct research on these research problems is lack of annotated data. Endoscopic annotations necessitate the specialist knowledge of expert endoscopists and due to this, it can be difficult to organise, expensive and time consuming. To address this problem, we investigate an active learning paradigm to reduce the number of training examples by selecting the most discriminative and diverse unlabelled examples for the task taken into consideration. Most of the existing active learning pipelines are task-agnostic in nature and are often sub-optimal to the end task. In this paper, we propose a novel task-aware active learning pipeline and applied for two important tasks in endoscopic image analysis: semantic segmentation and depth estimation. We compared our method with the competitive baselines. From the experimental results, we observe a substantial improvement over the compared baselines. Codes are available at https://github.com/thetna/endo-active-learn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源