论文标题
一维的对称合作运动
Symmetric cooperative motion in one dimension
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We explore the relationship between recursive distributional equations and convergence results for finite difference schemes of parabolic partial differential equations (PDEs). We focus on a family of random processes called symmetric cooperative motions, which generalize the symmetric simple random walk and the symmetric hipster random walk introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, arXiv:1909.07367]. We obtain a distributional convergence result for symmetric cooperative motions and, along the way, obtain a novel proof of the Bernoulli central limit theorem. In addition, we prove a PDE result relating distributional solutions and viscosity solutions of the porous medium equation and the parabolic $p$-Laplace equation, respectively, in one dimension.