论文标题
数据驱动的预测控制的实施和实验验证,以消除混合流量中的停止波浪
Implementation and Experimental Validation of Data-Driven Predictive Control for Dissipating Stop-and-Go Waves in Mixed Traffic
论文作者
论文摘要
在本文中,我们介绍了在散布交通波中,对连接和自动驾驶汽车(CAVS)的数据驱动预测控制的第一个实验结果。特别是,我们考虑了一种启用数据的预测巡航控制(DEEP-LCC)的最新策略,该策略绕开了确定周围车辆的驾驶行为的需求,并直接依靠可衡量的流量数据来实现混合流量中的安全和最佳CAV控制。我们介绍了DEEP-LCC的实现详细信息,包括数据收集,均衡估计和控制执行。基于微型实验平台,我们在两个典型的交通情况下重现了停留波浪的现象:1)在外部干扰下开放直线方案; 2)封闭环形场景,没有瓶颈。我们的实验清楚地表明,Deep-LCC使一个或几个骑士在两种交通情况下都可以消散交通波。这些实验发现证明了在存在嘈杂数据,不确定的低级车辆动力学以及通信和计算延迟的情况下,深度LCC在平滑实用交通流中的巨大潜力。我们的实验结果的代码和视频可在https://github.com/soc-ucsd/deep-lcc上找到。
In this paper, we present the first experimental results of data-driven predictive control for connected and autonomous vehicles (CAVs) in dissipating traffic waves. In particular, we consider a recent strategy of Data-EnablEd Predicted Leading Cruise Control (DeeP-LCC), which bypasses the need of identifying the driving behaviors of surrounding vehicles and directly relies on measurable traffic data to achieve safe and optimal CAV control in mixed traffic. We present the implementation details of DeeP-LCC, including data collection, equilibrium estimation, and control execution. Based on a miniature experiment platform, we reproduce the phenomenon of stop-and-go waves in two typical traffic scenarios: 1) open straight-road scenario under external disturbances and 2) closed ring-road scenario with no bottlenecks. Our experiments clearly demonstrate that DeeP-LCC enables one or a few CAVs to dissipate the traffic waves in both traffic scenarios. These experimental findings validate the great potential of DeeP-LCC in smoothing practical traffic flow in the presence of noisy data, uncertain low-level vehicle dynamics, and communication and computation delays. The code and videos of our experimental results are available at https://github.com/soc-ucsd/DeeP-LCC.