论文标题
使用线性测量测试阳性半精力
Testing Positive Semidefiniteness Using Linear Measurements
论文作者
论文摘要
我们研究测试的问题是对称的$ d \ times d $输入矩阵$ a $是对称的积极半芬矿(PSD),还是来自PSD锥的$ε$ -FAR,这是$λ_{\ min}(\ min}(\ min}(a)) $ a $。在应用中,通常需要快速分辨输入矩阵是否为PSD,并且距PSD锥距离很小。我们考虑了两个研究良好的查询模型,用于测量效率,即矩阵矢量和矢量 - 矩阵 - 矢量查询模型。我们首先考虑单方面的测试仪,它们是正确对任何PSD输入进行分类的测试仪,但可能会在非PSD输入上失败,而故障概率很小。在对数因素上,在矩阵向量查询模型中,我们显示了一个紧密的$ \widetildeθ(1/ε^{p/(2p+1)})$,而在vector-matrix-vector查询模型中,我们显示了一个紧密的$ \wideteLdeθ(d^{1-1/p}/pe bound $ pece。我们还显示了矢量 - 矩阵矢量模型中的单侧和双面测试仪之间的强分离,在该模型中,双面测试仪在PSD和非PSD输入中都可以失败,并且失效概率很小。特别是,对于Frobenius规范的重要情况,我们表明任何单方面的测试仪都需要$ \widetildeΩ(\ sqrt {d}/ε)$ QUERIES。但是,我们引入了双向测试的双线性草图,从中我们构造了一个Frobenius Norm Tester,该测试仪实现了最佳$ \ widetilde {o}(1/ε^2)$ QUERIES。我们还提供了自适应和非自适应测试仪之间的许多其他分离。我们的技术除了测试之外还具有含义,提供了新的方法,可以使用降低尺寸降低的方式近似矩阵的频谱,并以保留特征值的迹象的方式。
We study the problem of testing whether a symmetric $d \times d$ input matrix $A$ is symmetric positive semidefinite (PSD), or is $ε$-far from the PSD cone, meaning that $λ_{\min}(A) \leq - ε\|A\|_p$, where $\|A\|_p$ is the Schatten-$p$ norm of $A$. In applications one often needs to quickly tell if an input matrix is PSD, and a small distance from the PSD cone may be tolerable. We consider two well-studied query models for measuring efficiency, namely, the matrix-vector and vector-matrix-vector query models. We first consider one-sided testers, which are testers that correctly classify any PSD input, but may fail on a non-PSD input with a tiny failure probability. Up to logarithmic factors, in the matrix-vector query model we show a tight $\widetildeΘ(1/ε^{p/(2p+1)})$ bound, while in the vector-matrix-vector query model we show a tight $\widetildeΘ(d^{1-1/p}/ε)$ bound, for every $p \geq 1$. We also show a strong separation between one-sided and two-sided testers in the vector-matrix-vector model, where a two-sided tester can fail on both PSD and non-PSD inputs with a tiny failure probability. In particular, for the important case of the Frobenius norm, we show that any one-sided tester requires $\widetildeΩ(\sqrt{d}/ε)$ queries. However we introduce a bilinear sketch for two-sided testing from which we construct a Frobenius norm tester achieving the optimal $\widetilde{O}(1/ε^2)$ queries. We also give a number of additional separations between adaptive and non-adaptive testers. Our techniques have implications beyond testing, providing new methods to approximate the spectrum of a matrix with Frobenius norm error using dimensionality reduction in a way that preserves the signs of eigenvalues.