论文标题

特征增强的对抗性半监督语义分割网络,用于肺栓塞注释

Feature-enhanced Adversarial Semi-supervised Semantic Segmentation Network for Pulmonary Embolism Annotation

论文作者

Cheng, Ting-Wei, Chang, Jerry, Huang, Ching-Chun, Kuo, Chin, Cheng, Yun-Chien

论文摘要

这项研究建立了一个具有特征增强的对抗性半监督语义分割模型,以自动注释计算机断层扫描肺血管造影(CTPA)图像中的肺栓塞病变区域。在当前的研究中,所有PE CTPA图像分割方法均通过监督学习培训。但是,需要重新训练监督的学习模型,并且当CTPA图像来自不同的医院时,需要重新标记图像。这项研究提出了一种半监督的学习方法,通过添加少量未标记的图像来使该模型适用于不同的数据集。通过使用标记和未标记的图像训练模型,可以提高未标记图像的准确性,并可以降低标签成本。我们的半监督分割模型包括一个分割网络和一个歧视者网络。我们添加了从分割网络编码器生成的功能信息到歧视器,以便可以学习预测的掩码和地面真相掩码之间的相似性。这种基于HRNET的架构可以维持更高的卷积操作分辨率,因此可以改善小型PE病变区域的预测。我们使用标有标签的开源数据集和未标记的国家郑项大学医院(NCKUH)(IRB编号:B-ER-108-380)数据集来训练诉讼的学习模型,并在联盟(MIOU)上取得的平均值(MIOU),DICE得分和0.48510,以及0.4854,以及敏感性的平均值,并相互训练。数据集。然后,我们通过中国医科大学医院(CMUH)(IRB编号:CMUH110-REC3-173)数据集对少量未标记的PE CTPA图像进行了微调和测试。将我们的半监督模型的结果与监督模型,MIOU,骰子分数和灵敏度从0.2344、0.3325和0.3151和0.3721、0.5113和0.4967提高。

This study established a feature-enhanced adversarial semi-supervised semantic segmentation model to automatically annotate pulmonary embolism lesion areas in computed tomography pulmonary angiogram (CTPA) images. In current studies, all of the PE CTPA image segmentation methods are trained by supervised learning. However, the supervised learning models need to be retrained and the images need to be relabeled when the CTPA images come from different hospitals. This study proposed a semi-supervised learning method to make the model applicable to different datasets by adding a small amount of unlabeled images. By training the model with both labeled and unlabeled images, the accuracy of unlabeled images can be improved and the labeling cost can be reduced. Our semi-supervised segmentation model includes a segmentation network and a discriminator network. We added feature information generated from the encoder of segmentation network to the discriminator so that it can learn the similarity between predicted mask and ground truth mask. This HRNet-based architecture can maintain a higher resolution for convolutional operations so the prediction of small PE lesion areas can be improved. We used the labeled open-source dataset and the unlabeled National Cheng Kung University Hospital (NCKUH) (IRB number: B-ER-108-380) dataset to train the semi-supervised learning model, and the resulting mean intersection over union (mIOU), dice score, and sensitivity achieved 0.3510, 0.4854, and 0.4253, respectively on the NCKUH dataset. Then, we fine-tuned and tested the model with a small amount of unlabeled PE CTPA images from China Medical University Hospital (CMUH) (IRB number: CMUH110-REC3-173) dataset. Comparing the results of our semi-supervised model with the supervised model, the mIOU, dice score, and sensitivity improved from 0.2344, 0.3325, and 0.3151 to 0.3721, 0.5113, and 0.4967, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源