论文标题
HBFL:一个基于分层区块链的联合学习框架,用于协作IOT入侵检测
HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection
论文作者
论文摘要
由于互连设备的数量增加和共享敏感数据的数量,物联网生态系统的安全姿势的持续加强至关重要。防御物联网网络攻击的机器学习功能(ML)功能具有许多潜在的好处。但是,当前提出的框架不考虑物联网生态系统的数据隐私,安全体系结构和/或可扩展的部署。在本文中,我们提出了一个基于分层区块链的联合学习框架,以实现安全和隐私保存的协作IOT入侵检测。我们强调并证明了在组织间的物联网网络之间共享网络威胁智能以提高模型的检测功能的重要性。拟议的基于ML的入侵检测框架遵循分层联合学习体系结构,以确保学习过程和组织数据的隐私。交易(模型更新)和流程将在安全的不可变的分类帐上运行,并且执行任务的一致性将通过智能合约来验证。我们已经测试了解决方案,并通过使用关键的物联网数据集评估入侵检测性能来证明其可行性。结果是一种牢固设计的基于ML的入侵检测系统,能够在保留数据隐私的同时检测广泛的恶意活动。
The continuous strengthening of the security posture of IoT ecosystems is vital due to the increasing number of interconnected devices and the volume of sensitive data shared. The utilisation of Machine Learning (ML) capabilities in the defence against IoT cyber attacks has many potential benefits. However, the currently proposed frameworks do not consider data privacy, secure architectures, and/or scalable deployments of IoT ecosystems. In this paper, we propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection. We highlight and demonstrate the importance of sharing cyber threat intelligence among inter-organisational IoT networks to improve the model's detection capabilities. The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data. The transactions (model updates) and processes will run on a secure immutable ledger, and the conformance of executed tasks will be verified by the smart contract. We have tested our solution and demonstrated its feasibility by implementing it and evaluating the intrusion detection performance using a key IoT data set. The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.