论文标题

智能家庭互动的基于P300的脑部计算机接口中的模糊时间卷积神经网络

Fuzzy temporal convolutional neural networks in P300-based Brain-computer interface for smart home interaction

论文作者

Vega, Christian Flores, Quevedo, Jonathan, Escandón, Elmer, Kiani, Mehrin, Ding, Weiping, Andreu-Perez, Javier

论文摘要

脑电图信号(EEG)的处理和分类越来越多地使用深度学习框架(例如卷积神经网络(CNN))来生成大脑数据中的抽象特征,从而自动为非凡的分类铺平道路。然而,脑电图模式在时间上表现出很高的变异性和由于噪声而引起的不确定性。这是一个重要的问题,可以在基于P300的大脑计算机接口(BCI)中解决智能家庭互动。它在非最佳自然环境中运行,通常会增加噪声。在这项工作中,我们提出了一个临时卷卷网络(TCN)的顺序统一,该网络(TCN)用模糊的神经块(FNB)修改为EEG信号LSTM细胞,我们称为EEG-TCFNET。模糊组件可能使对嘈杂条件的容忍度更高。我们应用了三个不同的体系结构,比较了使用Block FNB对P300浪潮进行分类以构建BCI的效果,以与健康和中风后的个体进行智能家庭互动。我们的结果报告了使用EEG-TCFNET的拟议方法分别在受试者依赖性策略和受试者独立策略中提出的最大分类精度为98.6%和74.3%。总体而言,所有三种CNN拓扑中的FNB使用率都优于没有FNB的FNB。此外,我们将FNB的添加与其他最先进的方法进行了比较,并由于与FNB的集成而获得了更高的分类精度。提出的模型EEG-TCFNET的出色性能以及模糊单元与其他分类器的一般整合将为增强基于P300的BCIS铺平道路,以在自然设置内进行智能家庭交互。

The processing and classification of electroencephalographic signals (EEG) are increasingly performed using deep learning frameworks, such as convolutional neural networks (CNNs), to generate abstract features from brain data, automatically paving the way for remarkable classification prowess. However, EEG patterns exhibit high variability across time and uncertainty due to noise. It is a significant problem to be addressed in P300-based Brain Computer Interface (BCI) for smart home interaction. It operates in a non-optimal natural environment where added noise is often present. In this work, we propose a sequential unification of temporal convolutional networks (TCNs) modified to EEG signals, LSTM cells, with a fuzzy neural block (FNB), which we called EEG-TCFNet. Fuzzy components may enable a higher tolerance to noisy conditions. We applied three different architectures comparing the effect of using block FNB to classify a P300 wave to build a BCI for smart home interaction with healthy and post-stroke individuals. Our results reported a maximum classification accuracy of 98.6% and 74.3% using the proposed method of EEG-TCFNet in subject-dependent strategy and subject-independent strategy, respectively. Overall, FNB usage in all three CNN topologies outperformed those without FNB. In addition, we compared the addition of FNB to other state-of-the-art methods and obtained higher classification accuracies on account of the integration with FNB. The remarkable performance of the proposed model, EEG-TCFNet, and the general integration of fuzzy units to other classifiers would pave the way for enhanced P300-based BCIs for smart home interaction within natural settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源