论文标题

关于部分功能微分方程及其诱导的叠加模式的图林分叉

On Turing-Turing bifurcation of partial functional differential equations and its induced superposition patterns

论文作者

Cao, Xun, Jiang, Weihua

论文摘要

当两种图灵模式相互作用,即发生Turing-Turing分叉时,叠加模式揭示了复杂的动力学现象。在本文中,从理论上研究了图灵的融化分叉产生的叠加模式。首先,在局部拓扑相当于原始部分功能微分方程(PFDE)的三阶法线形式被得出。选择1D域和Neumann边界条件时,从原始的三阶正常形式推导了三种形式描述不同空间模式的正常形式。同样,给出了用于计算这些正常形式的系数的公式,它们以原始系统参数的明确形式表示。借助三种正常形式,研究了在Turing-turing奇异性附近具有Crowley-Martin功能响应的扩散捕食者捕食系统的空间模式。对于一组参数,扩散系统支持具有不同单一特征波长的四个稳定稳态的共存,这证明了我们以前的猜想。对于另一组参数,叠加模式,三个稳定模式,一对稳定的叠加稳态稳态与稳定的共存平衡或其他稳定的稳定态共存,以及一对稳定的叠加稳态稳态和另一对稳定的稳定稳态的稳态稳态,并共存。最后,证明数值模拟支持理论分析。

When two Turing modes interact, i.e., Turing-Turing bifurcation occurs, superposition patterns revealing complex dynamical phenomena appear. In this paper, superposition patterns resulting from Turing-Turing bifurcation are investigated in theory. Firstly, the third-order normal form locally topologically equivalent to original partial functional differential equations (PFDEs) is derived. When selecting 1D domain and Neumann boundary conditions, three normal forms describing different spatial patterns are deduced from original third-order normal form. Also, formulas for computing coefficients of these normal forms are given, which are expressed in explicit form of original system parameters. With the aid of three normal forms, spatial patterns of a diffusive predator-prey system with Crowley-Martin functional response near Turing-Turing singularity are investigated. For one set of parameters, diffusive system supports the coexistence of four stable steady states with different single characteristic wavelengths, which demonstrates our previous conjecture. For another set of parameters, superposition patterns, tri-stable patterns that a pair of stable superposition steady states coexists with the stable coexistence equilibrium or another stable steady state, as well as quad-stable patterns that a pair of stable superposition steady states and another pair of stable steady states coexist, arise. Finally, numerical simulations are shown to support theory analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源