论文标题

由无限的单基因族产生的代数数字字段

Algebraic number fields generated by an infinite family of monogenic trinomials

论文作者

Mayer, Daniel C., Soullami, Abderazak

论文摘要

For an infinite family of monogenic trinomials $P(X) = X^3\pm 3rbX-b$ in $\mathbb{Z}\lbrack X\rbrack$, arithmetical invariants of the cubic number field $L = \mathbb{Q}(θ)$, generated by a zero $θ$ of $P(X)$, and of its Galois closure确定$ n = l(\ sqrt {d(l)})$。周期性立方相对扩展的导体$ f $,其中$ k = \ mathbb {q}(\ sqrt {d(l)})$表示$ n $的唯一二次次级子场,被证明是$ 3^eb $ in \ lbrace $ e \ lbrace $ lbrace $ lbrace $ lbrace 1,2 ebrace cans cans cans cans cans cans cans $ 3^eb $ cans cans cans cans cans cans cans cans cans cans cans cans cans 1,2 2,22理想,晶格最小值和$ L $的独立单位。确定$ ldots,ldots,l_m $的数字$ m $ $ ldots $ ldots $ $ $ $ $ $ $ $共享一个常见的判别$ d(l_i)= d(l)$ a $ l $。

For an infinite family of monogenic trinomials $P(X) = X^3\pm 3rbX-b$ in $\mathbb{Z}\lbrack X\rbrack$, arithmetical invariants of the cubic number field $L = \mathbb{Q}(θ)$, generated by a zero $θ$ of $P(X)$, and of its Galois closure $N = L(\sqrt{d(L)})$ are determined. The conductor $f$ of the cyclic cubic relative extension $N/K$, where $K = \mathbb{Q}(\sqrt{d(L)})$ denotes the unique quadratic subfield of $N$, is proved to be of the form $3^eb$ with $e\in\lbrace 1,2\rbrace$, which admits statements concerning primitive ambiguous principal ideals, lattice minima, and independent units in $L$. The number $m$ of non-isomorphic cubic fields $L_1,\ldots,L_m$ sharing a common discriminant $d(L_i) = d(L)$ with $L$ is determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源