论文标题
更快的单调实例的最小产品
Faster Min-Plus Product for Monotone Instances
论文作者
论文摘要
在本文中,我们表明,单调最小值的产物的时间复杂性是$ \ tilde {o}(n^{(3+ω)/2})= \ tilde {o} {o}(o}(n^2.687})$威廉姆斯2021]。也就是说,当$ a $是任意整数矩阵时,$ b $是行超声酮或柱 - 单酮,具有由$ o(n)$界限的整数元素,计算$ c $ c $ ch $ c_ {i,j} = \ min_k = \ min_k \ min_k \ {a___ {a_ _} a_ {i,k}+b_} $ \ tilde {o}(n^{(3+ω)/2})$时间,这大大改善了$ \ tilde {o}(n^{(n^{(12+ω)/5})= \ tilde = \ tilde {o}(n^o}(n^{2.875})$ [2.875})$ [gu,polak,vassile,然后,通过简单的减少,这意味着以下问题也具有$ \ tilde {o}(n^{(3+ω)/2})$ time算法: (1)$ a $和$ b $都是有限差分,也就是说,任何两个相邻条目之间的差异都是常数。先前的结果给出了$ \ tilde {o}(n^{2.824})$ [Bringmann,Grandoni,Saha和Vassilevska Williams 2016]和$ \ Tilde {O}(N^{2.779})$ [CHI,DUAN和XIE 2022]。 (2)$ a $是任意的,$ b $的列或行是有限差的。先前的结果给出了$ \ tilde {o}(n^{2.922})$ [Bringmann,Grandoni,Saha和Vassilevska Williams 2016]的时间复杂性。 (3)可以简化为这些问题的问题,例如语言编辑距离,RNA折叠,在BD语法上得分分析问题。 [Bringmann,Grandoni,Saha和Vassilevska Williams 2016]。 最后,我们还考虑了两个单调和由$ o(n)$界定的两个积分序列之间的最小卷积问题,并实现了$ \ tilde {o}(n^{1.5})$的运行时间上限。以前,此任务需要运行时间$ \ tilde {o}(n^{(9+ \ sqrt {177})/12})= o(n^{1.859})$ [Chan and Lewenstein 2015]。
In this paper, we show that the time complexity of monotone min-plus product of two $n\times n$ matrices is $\tilde{O}(n^{(3+ω)/2})=\tilde{O}(n^{2.687})$, where $ω< 2.373$ is the fast matrix multiplication exponent [Alman and Vassilevska Williams 2021]. That is, when $A$ is an arbitrary integer matrix and $B$ is either row-monotone or column-monotone with integer elements bounded by $O(n)$, computing the min-plus product $C$ where $C_{i,j}=\min_k\{A_{i,k}+B_{k,j}\}$ takes $\tilde{O}(n^{(3+ω)/2})$ time, which greatly improves the previous time bound of $\tilde{O}(n^{(12+ω)/5})=\tilde{O}(n^{2.875})$ [Gu, Polak, Vassilevska Williams and Xu 2021]. Then by simple reductions, this means the following problems also have $\tilde{O}(n^{(3+ω)/2})$ time algorithms: (1) $A$ and $B$ are both bounded-difference, that is, the difference between any two adjacent entries is a constant. The previous results give time complexities of $\tilde{O}(n^{2.824})$ [Bringmann, Grandoni, Saha and Vassilevska Williams 2016] and $\tilde{O}(n^{2.779})$ [Chi, Duan and Xie 2022]. (2) $A$ is arbitrary and the columns or rows of $B$ are bounded-difference. Previous result gives time complexity of $\tilde{O}(n^{2.922})$ [Bringmann, Grandoni, Saha and Vassilevska Williams 2016]. (3) The problems reducible to these problems, such as language edit distance, RNA-folding, scored parsing problem on BD grammars. [Bringmann, Grandoni, Saha and Vassilevska Williams 2016]. Finally, we also consider the problem of min-plus convolution between two integral sequences which are monotone and bounded by $O(n)$, and achieve a running time upper bound of $\tilde{O}(n^{1.5})$. Previously, this task requires running time $\tilde{O}(n^{(9+\sqrt{177})/12}) = O(n^{1.859})$ [Chan and Lewenstein 2015].