论文标题
使用新型小波包分解与规范相关分析结合使用新型小波包分解的单渠道脑电图和FNIRS信号的运动伪影校正
Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis
论文作者
论文摘要
脑电图(EEG)和功能性近红外光谱(FNIRS)信号,自然界高度非稳态,在使用可穿戴传感器记录的同时,大大遭受了运动伪影。本文提出了两种可靠的方法:i)小波数据包分解(WPD)和ii)WPD与规范相关分析(WPD-CCA)结合使用,以从单通道EEG和FNIRS信号中进行运动伪影校正。这些提出的技术的功效是使用基准数据集测试的,并使用两个完善的性能矩阵测量所提出的方法的性能:i)信号与噪声比(ΔSNR)和ii)差异(ΔSNR)和ii)运动文物(η)的降低百分比。提出的基于WPD的单阶段运动伪影校正技术会产生最高的平均ΔSNR(29.44 dB),而DB2小波数据包被合并时,而最大的平均η(53.48%)是使用DB1 Wavelet数据包获得的所有可用23 EEG记录。我们提出的两阶段运动伪像校正技术,即利用DB1小波数据包的WPD-CCA方法显示出最佳的替代性能,可产生平均ΔSNR和η值30.76 db和59.51%,分别为所有EEG录音。另一方面,两阶段的运动伪影去除技术,即WPD-CCA产生了最佳的平均ΔSNR(使用DB1小波包数据包)和最大的平均η(使用FK8小波数据包)和最大的平均η(41.40%)。使用FK4小波数据包的所有FNIRS信号,使用单阶段伪像去除技术(WPD)的最高平均ΔSNR和η分别为16.11 dB和26.40%。在EEG和FNIRS模式中,当采用两阶段的WPD-CCA技术时,运动伪像的降低百分比分别增加了11.28%和56.82%。
The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. This paper proposes two robust methods: i) Wavelet packet decomposition (WPD), and ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: i) Difference in the signal to noise ratio (ΔSNR) and ii) Percentage reduction in motion artifacts (η). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average ΔSNR (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average η (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique i.e. the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average ΔSNR and η values of 30.76 dB and 59.51%, respectively for all the EEG recordings. On the other hand, the two-stage motion artifacts removal technique i.e. WPD-CCA has produced the best average ΔSNR (16.55 dB, utilizing db1 wavelet packet) and largest average η (41.40%, using fk8 wavelet packet). The highest average ΔSNR and η using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed.