论文标题
与标签比较的积极学习
Active Learning with Label Comparisons
论文作者
论文摘要
监督学习通常依赖于真实标签的手动注释。当有许多潜在的类别时,寻找最佳的班级对于人类注释者可能会过时。另一方面,比较两个候选标签通常要容易得多。我们专注于这种成对的监督,并询问如何有效地用于学习,尤其是在积极学习中。在这种情况下,我们获得了一些有见地的结果。原则上,可以使用$ k-1 $ Active查询来找到最好的$ K $标签。我们表明,有一种自然阶级,这种方法是最佳选择的,并且有一个比较有效的主动学习方案。我们分析中的一个关键要素是真实分布的“标签邻域图”,如果两个类共享决策边界,则在两个类之间具有优势。我们还表明,在PAC设置中,在最坏情况下,成对比较无法提供改善的样品复杂性。我们通过实验补充了我们的理论结果,清楚地证明了邻里图对样品复杂性的影响。
Supervised learning typically relies on manual annotation of the true labels. When there are many potential classes, searching for the best one can be prohibitive for a human annotator. On the other hand, comparing two candidate labels is often much easier. We focus on this type of pairwise supervision and ask how it can be used effectively in learning, and in particular in active learning. We obtain several insightful results in this context. In principle, finding the best of $k$ labels can be done with $k-1$ active queries. We show that there is a natural class where this approach is sub-optimal, and that there is a more comparison-efficient active learning scheme. A key element in our analysis is the "label neighborhood graph" of the true distribution, which has an edge between two classes if they share a decision boundary. We also show that in the PAC setting, pairwise comparisons cannot provide improved sample complexity in the worst case. We complement our theoretical results with experiments, clearly demonstrating the effect of the neighborhood graph on sample complexity.