论文标题

基于机器学习的CSI反馈,其长度可变的FDD大量MIMO

Machine Learning-Based CSI Feedback With Variable Length in FDD Massive MIMO

论文作者

Nerini, Matteo, Rizzello, Valentina, Joham, Michael, Utschick, Wolfgang, Clerckx, Bruno

论文摘要

为了完全解锁多输入多输出(MIMO)网络的好处,基本站(BS)需要下行链路通道状态信息(CSI)。在频分化双工(FDD)系统中,CSI是通过用户设备(UE)的反馈信号获取的。但是,这可能会导致FDD大型MIMO系统中的重要开销。在研究这些系统上,在这项研究中,我们提出了一种设计CSI反馈的新型策略。我们的策略允许最佳设计可变长度反馈,这与固定反馈相比是有希望的,因为用户体验频道矩阵的稀疏不同。具体而言,主成分分析(PCA)用于将通道压缩到具有自适应维度的潜在空间中。为了量化此压缩通道,通过最小化归一化平方误差(NMSE)失真,将反馈位巧妙地分配给了潜在空间尺寸。最后,用K-均值集群确定量化代码簿。数值模拟表明,与CsinetPro相比,我们的策略将零型波束成绩率提高了17%。模型参数的数量减少了23.4倍,从而导致开销明显较小。同时,PCA的特征是轻量无监督的训练,需要训练样品的八倍,其训练样本少于Csinetpro。

To fully unlock the benefits of multiple-input multiple-output (MIMO) networks, downlink channel state information (CSI) is required at the base station (BS). In frequency division duplex (FDD) systems, the CSI is acquired through a feedback signal from the user equipment (UE). However, this may lead to an important overhead in FDD massive MIMO systems. Focusing on these systems, in this study, we propose a novel strategy to design the CSI feedback. Our strategy allows to optimally design variable length feedback, that is promising compared to fixed feedback since users experience channel matrices differently sparse. Specifically, principal component analysis (PCA) is used to compress the channel into a latent space with adaptive dimensionality. To quantize this compressed channel, the feedback bits are smartly allocated to the latent space dimensions by minimizing the normalized mean squared error (NMSE) distortion. Finally, the quantization codebook is determined with k-means clustering. Numerical simulations show that our strategy improves the zero-forcing beamforming sum rate by 17%, compared to CsiNetPro. The number of model parameters is reduced by 23.4 times, thus causing a significantly smaller offloading overhead. At the same time, PCA is characterized by a lightweight unsupervised training, requiring eight times fewer training samples than CsiNetPro.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源