论文标题

非交通单位行球中的亚速度希尔伯特空间

Sub-Hardy Hilbert spaces in the non-commutative unit row-ball

论文作者

Jury, Michael T., Martin, Robert T. W.

论文摘要

In the classical Hardy space theory of square-summable Taylor series in the complex unit disk there is a circle of ideas connecting Szegö's theorem, factorization of positive semi-definite Toeplitz operators, non-extreme points of the convex set of contractive analytic functions, de Branges--Rovnyak spaces and the Smirnov class of ratios of bounded analytic functions in the disk.我们将这些想法扩展到完整的Fock空间的多变量和非共同设置,该设置在几个非交换变量中被标识为Square-ummable Power系列的\ Emph {free Hardy Space}。作为应用程序,我们证明了用于非共同合理函数的Fejér-Riesz样式定理。

In the classical Hardy space theory of square-summable Taylor series in the complex unit disk there is a circle of ideas connecting Szegö's theorem, factorization of positive semi-definite Toeplitz operators, non-extreme points of the convex set of contractive analytic functions, de Branges--Rovnyak spaces and the Smirnov class of ratios of bounded analytic functions in the disk. We extend these ideas to the multi-variable and non-commutative setting of the full Fock space, identified as the \emph{free Hardy space} of square-summable power series in several non-commuting variables. As an application, we prove a Fejér-Riesz style theorem for non-commutative rational functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源