论文标题
基于变压器的自我监督学习以识别情绪
Transformer-Based Self-Supervised Learning for Emotion Recognition
论文作者
论文摘要
为了利用时间序列信号(例如生理信号)的表示,这些表示必须从整个信号中捕获相关信息至关重要。在这项工作中,我们建议使用基于变压器的模型来处理心电图(ECG)进行情绪识别。变压器的注意机制可用于为信号构建上下文化表示形式,从而更加重视相关部分。然后可以使用完全连接的网络来处理这些表示形式以预测情绪。为了克服具有情感标签的数据集相对较小的大小,我们采用了自我监督的学习。我们收集了几个ECG数据集,没有情感标签来预先培训我们的模型,然后我们对Amigos数据集进行了微调以识别情感。我们表明,我们的方法可以使用Amigos上的ECG信号来达到最新的情感表演。更普遍地,我们的实验表明,变压器和预训练是通过生理信号识别情绪的有前途的策略。
In order to exploit representations of time-series signals, such as physiological signals, it is essential that these representations capture relevant information from the whole signal. In this work, we propose to use a Transformer-based model to process electrocardiograms (ECG) for emotion recognition. Attention mechanisms of the Transformer can be used to build contextualized representations for a signal, giving more importance to relevant parts. These representations may then be processed with a fully-connected network to predict emotions. To overcome the relatively small size of datasets with emotional labels, we employ self-supervised learning. We gathered several ECG datasets with no labels of emotion to pre-train our model, which we then fine-tuned for emotion recognition on the AMIGOS dataset. We show that our approach reaches state-of-the-art performances for emotion recognition using ECG signals on AMIGOS. More generally, our experiments show that transformers and pre-training are promising strategies for emotion recognition with physiological signals.