论文标题

在加工中进行自主聊天检测的转移学习

Transfer Learning for Autonomous Chatter Detection in Machining

论文作者

Yesilli, Melih C., Khasawneh, Firas A., Mann, Brian

论文摘要

大型振动震动是加工过程中最重要的现象之一。切割操作通常会导致表面效果差和刀具寿命降低。因此,在过去十年中,使用机器学习的聊天检测一直是一个活跃的研究领域。在将机器学习应用于整个行业的聊天检测中,可以确定三个挑战:对各个过程中chat不平的特征的普遍性,自动化功能提取的需求以及每个特定工件 - 机器机器工具组合的有限数据的需求不足。这三个挑战可以分组在转移学习的保护下。本文通过评估突出和新型聊天检测方法的转移学习来研究自动检测。我们使用从不同切割构型的转弯和铣削实验中提取的各种功能研究了聊天分类精度。研究的方法包括快速傅立叶变换(FFT),功率谱密度(PSD),自动相关函数(ACF),小波数据包转换(WPT)和集合经验模式分解(EEMD)。我们还基于拓扑数据分析(TDA)和基于离散时间扭曲(DTW)的时间序列的相似性度量研究了最新的方法。我们通过训练和在转向和铣削数据集内外测试来评估每种方法的转移学习潜力。我们的结果表明,精心选择的时频功能可以导致高分类精度,尽管需要手动预处理和专家用户的标签。另一方面,我们发现TDA和DTW方法可以与时频方法提供准确性和F1分数,而无需手动预处理。

Large-amplitude chatter vibrations are one of the most important phenomena in machining processes. It is often detrimental in cutting operations causing a poor surface finish and decreased tool life. Therefore, chatter detection using machine learning has been an active research area over the last decade. Three challenges can be identified in applying machine learning for chatter detection at large in industry: an insufficient understanding of the universality of chatter features across different processes, the need for automating feature extraction, and the existence of limited data for each specific workpiece-machine tool combination. These three challenges can be grouped under the umbrella of transfer learning. This paper studies automating chatter detection by evaluating transfer learning of prominent as well as novel chatter detection methods. We investigate chatter classification accuracy using a variety of features extracted from turning and milling experiments with different cutting configurations. The studied methods include Fast Fourier Transform (FFT), Power Spectral Density (PSD), the Auto-correlation Function (ACF), Wavelet Packet Transform (WPT), and Ensemble Empirical Mode Decomposition (EEMD). We also examine more recent approaches based on Topological Data Analysis (TDA) and similarity measures of time series based on Discrete Time Warping (DTW). We evaluate the transfer learning potential of each approach by training and testing both within and across the turning and milling data sets. Our results show that carefully chosen time-frequency features can lead to high classification accuracies albeit at the cost of requiring manual pre-processing and the tagging of an expert user. On the other hand, we found that the TDA and DTW approaches can provide accuracies and F1 scores on par with the time-frequency methods without the need for manual preprocessing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源