论文标题

基于替代量子算法的优化

Surrogate-based optimization for variational quantum algorithms

论文作者

Shaffer, Ryan, Kocia, Lucas, Sarovar, Mohan

论文摘要

变分量子算法是一类旨在用于近期量子计算机的技术。这些算法的目的是通过将问题分解为大量浅量子电路来执行大量量子计算,并通过每个电路执行之间的经典优化和反馈进行补充。提高这些算法性能的一条途径是增强经典优化技术。鉴于相对容易和丰富的古典计算资源,有足够的机会这样做。在这项工作中,我们介绍了使用几乎没有实验测量值学习替代模型的替代模型的想法,然后使用这些模型进行参数优化,而不是原始数据。我们使用基于内核近似值的替代模型来证明这一想法,我们通过该模型使用噪声量子电路结果批处理重建了变异成本函数的本地斑块。通过应用于量子近似优化算法和分子的基态制备,我们证明了基于替代算法的优化技术的优势。

Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers. The goal of these algorithms is to perform large quantum computations by breaking the problem down into a large number of shallow quantum circuits, complemented by classical optimization and feedback between each circuit execution. One path for improving the performance of these algorithms is to enhance the classical optimization technique. Given the relative ease and abundance of classical computing resources, there is ample opportunity to do so. In this work, we introduce the idea of learning surrogate models for variational circuits using few experimental measurements, and then performing parameter optimization using these models as opposed to the original data. We demonstrate this idea using a surrogate model based on kernel approximations, through which we reconstruct local patches of variational cost functions using batches of noisy quantum circuit results. Through application to the quantum approximate optimization algorithm and preparation of ground states for molecules, we demonstrate the superiority of surrogate-based optimization over commonly-used optimization techniques for variational algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源