论文标题
偏差分级$(a_ \ infty)$ hyperface奇点
Skew graded $(A_\infty)$ hypersurface singularities
论文作者
论文摘要
对于分级$(a_ \ infty)$ hypersurface singularity $ a $ a $ a $ a $的偏斜版本,我们研究了稳定的分级最大cohen-macaulay模块,超过$ a $。结果,我们看到$ A $具有无限的Cohen-Macaulay代表性类型,并且不是非交换性分级孤立性的。
For a skew version of a graded $(A_\infty)$ hypersurface singularity $A$, we study the stable category of graded maximal Cohen-Macaulay modules over $A$. As a consequence, we see that $A$ has countably infinite Cohen-Macaulay representation type and is not a noncommutative graded isolated singularity.