论文标题

部分可观测时空混沌系统的无模型预测

Contracting differential equations in weighted Banach spaces

论文作者

Srinivasan, Anand, Slotine, Jean-Jacques

论文摘要

线性化操作员很容易验证矢量价值的微分方程中的大地收缩。但是,在无限维度的环境中,这种分析通常仅限于规范缩减系统。我们使用切好的半分子产品结构在切线空间上开发了地球收缩率的概括为BANACH空间。我们表明,在族裔加权空间中的负收缩率表示渐进式标准收缩,并应用了Banach空间中渐近收缩的最新结果,以确定固定点的存在。我们表明,过度加权空间中的收缩验证了非平衡性渐近性特性,例如融合到有限和无限维子空间,子序列,极限周期和相锁现象。我们在加权Sobolev空间中使用收缩率来建立非线性PDE中的存在和连续数据依赖性,并构成一种使用消失的单方面Lipschitz近似值来构建弱解的方法。我们讨论了控制和降低PDE的应用。

Geodesic contraction in vector-valued differential equations is readily verified by linearized operators which are uniformly negative-definite in the Riemannian metric. In the infinite-dimensional setting, however, such analysis is generally restricted to norm-contracting systems. We develop a generalization of geodesic contraction rates to Banach spaces using a smoothly-weighted semi-inner product structure on tangent spaces. We show that negative contraction rates in bijectively weighted spaces imply asymptotic norm-contraction, and apply recent results on asymptotic contractions in Banach spaces to establish the existence of fixed points. We show that contraction in surjectively weighted spaces verify non-equilibrium asymptotic properties, such as convergence to finite- and infinite-dimensional subspaces, submanifolds, limit cycles, and phase-locking phenomena. We use contraction rates in weighted Sobolev spaces to establish existence and continuous data dependence in nonlinear PDEs, and pose a method for constructing weak solutions using vanishing one-sided Lipschitz approximations. We discuss applications to control and order reduction of PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源