论文标题
二十一世纪的计算统计和数据科学
Computational Statistics and Data Science in the Twenty-first Century
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Data science has arrived, and computational statistics is its engine. As the scale and complexity of scientific and industrial data grow, the discipline of computational statistics assumes an increasingly central role among the statistical sciences. An explosion in the range of real-world applications means the development of more and more specialized computational methods, but five Core Challenges remain. We provide a high-level introduction to computational statistics by focusing on its central challenges, present recent model-specific advances and preach the ever-increasing role of non-sequential computational paradigms such as multi-core, many-core and quantum computing. Data science is bringing major changes to computational statistics, and these changes will shape the trajectory of the discipline in the 21st century.