论文标题

部分可观测时空混沌系统的无模型预测

Speech Emotion Recognition with Global-Aware Fusion on Multi-scale Feature Representation

论文作者

Zhu, Wenjing, Li, Xiang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Speech Emotion Recognition (SER) is a fundamental task to predict the emotion label from speech data. Recent works mostly focus on using convolutional neural networks~(CNNs) to learn local attention map on fixed-scale feature representation by viewing time-varied spectral features as images. However, rich emotional feature at different scales and important global information are not able to be well captured due to the limits of existing CNNs for SER. In this paper, we propose a novel GLobal-Aware Multi-scale (GLAM) neural network (The code is available at https://github.com/lixiangucas01/GLAM) to learn multi-scale feature representation with global-aware fusion module to attend emotional information. Specifically, GLAM iteratively utilizes multiple convolutional kernels with different scales to learn multiple feature representation. Then, instead of using attention-based methods, a simple but effective global-aware fusion module is applied to grab most important emotional information globally. Experiments on the benchmark corpus IEMOCAP over four emotions demonstrates the superiority of our proposed model with 2.5% to 4.5% improvements on four common metrics compared to previous state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源