论文标题

部分可观测时空混沌系统的无模型预测

HyperDet3D: Learning a Scene-conditioned 3D Object Detector

论文作者

Zheng, Yu, Duan, Yueqi, Lu, Jiwen, Zhou, Jie, Tian, Qi

论文摘要

图书馆中的一个浴缸,办公室中的水槽,洗衣房的床 - 反向表明,场景为3D对象检测提供了重要的先验知识,这指示消除对类似物体的模棱两可的检测。在本文中,我们建议HyperDet3D探索3D对象检测的场景条件的先验知识。现有的方法努力更好地表示本地元素及其关系而没有场景条件的知识,这可能仅基于对各个点和对象候选者的理解而导致歧义。取而代之的是,HyperDet3D同时通过场景条件的HyperNetworks学习场景敏捷的嵌入和特定于场景的知识。更具体地说,我们的HyperDet3D不仅探索了来自各种3D场景的可共享摘要,而且还可以在测试时调整检测器到给定的场景。我们提出了一个歧视性多头场景特定注意(MSA)模块,以动态控制以场景条件知识融合为条件的检测器的层参数。我们的HyperDet3D在扫描仪和Sun RGB-D数据集的3D对象检测基准上实现了最新的结果。此外,通过跨数据库评估,我们显示获得的场景条件的先验知识在面对域间隙的3D场景时仍会生效。

A bathtub in a library, a sink in an office, a bed in a laundry room -- the counter-intuition suggests that scene provides important prior knowledge for 3D object detection, which instructs to eliminate the ambiguous detection of similar objects. In this paper, we propose HyperDet3D to explore scene-conditioned prior knowledge for 3D object detection. Existing methods strive for better representation of local elements and their relations without scene-conditioned knowledge, which may cause ambiguity merely based on the understanding of individual points and object candidates. Instead, HyperDet3D simultaneously learns scene-agnostic embeddings and scene-specific knowledge through scene-conditioned hypernetworks. More specifically, our HyperDet3D not only explores the sharable abstracts from various 3D scenes, but also adapts the detector to the given scene at test time. We propose a discriminative Multi-head Scene-specific Attention (MSA) module to dynamically control the layer parameters of the detector conditioned on the fusion of scene-conditioned knowledge. Our HyperDet3D achieves state-of-the-art results on the 3D object detection benchmark of the ScanNet and SUN RGB-D datasets. Moreover, through cross-dataset evaluation, we show the acquired scene-conditioned prior knowledge still takes effect when facing 3D scenes with domain gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源