论文标题

组合身份和超几何序列

Combinatorial identities and hypergeometric series

论文作者

Diekema, Enno

论文摘要

本文介绍了一种与许多示例之间找到组合身份和超几何序列之间联系的方法。组合身份通常可以写成具有单位参数的超几何序列。在许多情况下,这些超几何序列是平衡的,可以简化为更简单的形式。在本文中,使用此方法证明了一些组合身份,假设Prudnikov等人表中的结果。 [12]在不使用超测量功能的情况下被证明。

This paper describes a method to find a connection between combinatorial identities and hypergeometric series with a number of examples. Combinatorial identities can often be written as hypergeometric series with unit argument. In a number of cases these hypergeometric series are balanced and can be reduced to a simpler form. In this paper some combinatorial identities are proved using this method assuming that the results in the tables of Prudnikov et al. [12] are proven without using hypergeometric functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源