论文标题

一项有关橡树岭国家实验室实验和观察科学的可持续软件生态系统的调查

A Survey on Sustainable Software Ecosystems to Support Experimental and Observational Science at Oak Ridge National Laboratory

论文作者

Bernholdt, David E, Doucet, Mathieu, Godoy, William F, Malviya-Thakur, Addi, Watson, Gregory R

论文摘要

为了寻找用于支持橡树岭国家实验室(ORNL)实验和观察科学(EOS)的软件生态系统的可持续方法,我们进行了一项调查,以了解EOS软件和数据的当前和未来景观。本文介绍了我们用来确定重要领域,差距和潜在机会的调查设计,然后讨论获得的回答。该调查提出了有关当前和未来五年所需的项目人口统计学,技术方法和技能的问题。这项研究是在2021年6月至7月之间的38名ORNL参与者中进行的,并遵循了人类受试者培训所需的准则。我们计划使用收集的信息来帮助指导可持续,基于社区和可重复使用的科学软件生态系统,这些软件生态系统需要有效地适应:i)在下一代仪器和计算机中,异质硬件的不断发展的景观(例如,Edge,例如Edge,Edge,分布式,Ackelators,Accelerators,Accelerators,Accelerators,accelerators),以及II)使用人工智能的数据管理需求。

In the search for a sustainable approach for software ecosystems that supports experimental and observational science (EOS) across Oak Ridge National Laboratory (ORNL), we conducted a survey to understand the current and future landscape of EOS software and data. This paper describes the survey design we used to identify significant areas of interest, gaps, and potential opportunities, followed by a discussion on the obtained responses. The survey formulates questions about project demographics, technical approach, and skills required for the present and the next five years. The study was conducted among 38 ORNL participants between June and July of 2021 and followed the required guidelines for human subjects training. We plan to use the collected information to help guide a vision for sustainable, community-based, and reusable scientific software ecosystems that need to adapt effectively to: i) the evolving landscape of heterogeneous hardware in the next generation of instruments and computing (e.g. edge, distributed, accelerators), and ii) data management requirements for data-driven science using artificial intelligence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源