论文标题

矩阵产品运营商代数I:弱霍普夫代数和预计纠缠的状态的表示

Matrix product operator algebras I: representations of weak Hopf algebras and projected entangled pair states

论文作者

Molnar, Andras, de Alarcón, Alberto Ruiz, Garre-Rubio, José, Schuch, Norbert, Cirac, J. Ignacio, Pérez-García, David

论文摘要

矩阵产品运营商(MPO)是代表作用于1D系统的操作员的张量网络。他们对各种情况进行建模,包括具有记忆效应的通信通道,量子蜂窝自动机,一维量子系统中的混合状态或与2D量子系统相关的全息边界模型。事实证明,MPO特别有用的情况是表示非平凡对称性的代数。具体而言,在2D量子系统中受到对称性保护和拓扑排序相的边界以MPO的形式表现出对称性。 在本文中,我们将MPO的理论作为代数结构的表示。我们在代数和MPO属性之间建立了词典,该字典允许在两个设置之间转移结果,涵盖了双子前,较弱的双gebras和弱HOPF代数。我们定义了拉动式代数的概念,该概念提取了从MPO代数定义拓扑排序的2D张量网络所需的最小要求。作为我们的主要结果之一,我们表明,任何半圣事弱弱的Hopf代数都是拉力耕作代数。我们通过证明它们可用于构建Kitaev代数的量子双重模型来证明该框架的力量,仅来自HOPF代数的MPO代数,其方式与从融合类别中获得的MPO对称性完全相同,可用于构建Levin-Wen弦乐模型,以解释其所有拓扑特征,以构建Levin-wen String-Net模型,并解释其所有拓扑功能;因此,它允许在同一正式基础上描述Kitaev和String-Net模型。

Matrix Product Operators (MPOs) are tensor networks representing operators acting on 1D systems. They model a wide variety of situations, including communication channels with memory effects, quantum cellular automata, mixed states in 1D quantum systems, or holographic boundary models associated to 2D quantum systems. A scenario where MPOs have proven particularly useful is to represent algebras of non-trivial symmetries. Concretely, the boundary of both symmetry protected and topologically ordered phases in 2D quantum systems exhibit symmetries in the form of MPOs. In this paper, we develop a theory of MPOs as representations of algebraic structures. We establish a dictionary between algebra and MPO properties which allows to transfer results between both setups, covering the cases of pre-bialgebras, weak bialgebras, and weak Hopf algebras. We define the notion of pulling-through algebras, which abstracts the minimal requirements needed to define topologically ordered 2D tensor networks from MPO algebras. We show, as one of our main results, that any semisimple pivotal weak Hopf algebra is a pulling-trough algebra. We demonstrate the power of this framework by showing that they can be used to construct Kitaev's quantum double models for Hopf algebras solely from an MPO representation of the Hopf algebra, in the exact same way as MPO symmetries obtained from fusion categories can be used to construct Levin-Wen string-net models, and to explain all their topological features; it thus allows to describe both Kitaev and string-net models on the same formal footing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源