论文标题
部分可观测时空混沌系统的无模型预测
A combinatorial model for the fermionic diagonal coinvariant ring
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $Θ_n = (θ_1, \dots, θ_n)$ and $Ξ_n = (ξ_1, \dots, ξ_n)$ be two lists of $n$ variables and consider the diagonal action of $\mathfrak{S}_n$ on the exterior algebra $\wedge \{ Θ_n, Ξ_n \}$ generated by these variables. Jongwon Kim and Rhoades defined and studied the fermionic diagonal coinvariant ring $FDR_n$ obtained from $\wedge \{ Θ_n, Ξ_n \}$ by modding out by the $\mathfrak{S}_n$-invariants with vanishing constant term. In joint work with Rhoades we gave a basis for the maximal degree components of this ring where the action of $\mathfrak{S}_n$ could be interpreted combinatorially via noncrossing set partitions. This paper will do similarly for the entire ring, although the combinatorial interpretation will be limited to the action of $\mathfrak{S}_{n-1} \subset \mathfrak{S}_n$. The basis will be indexed by a certain class of noncrossing partitions.