论文标题
部分可观测时空混沌系统的无模型预测
Edge observables of the Maxwell-Chern-Simons theory
论文作者
论文摘要
我们分析了Maxwell-Chern-Simons理论的Lagrangian和Hamiltonian公式,该理论定义在带有边界的两种不同边界方程的歧管上,这些方程是从变异原理中得出的。我们特别注意识别边界约束及其解决方案的无限链。我们识别Edge可观测值及其代数[对应于著名的$ U(1)$ kac-Moody代数]。不执行任何量规修复,并使用霍奇 - 莫雷定理,我们尽可能解决汉密尔顿方程。为了提供明确的解决方案,我们考虑在$ 2 $ disk上定义字段的特定情况。最后,我们研究了系统的Fock量化,并讨论了量子边缘可观察物和状态。
We analyze the Lagrangian and Hamiltonian formulations of the Maxwell-Chern-Simons theory defined on a manifold with boundary for two different sets of boundary equations derived from a variational principle. We pay special attention to the identification of the infinite chains of boundary constraints and their resolution. We identify edge observables and their algebra [which corresponds to the well-known $U(1)$ Kac-Moody algebra]. Without performing any gauge fixing, and using the Hodge-Morrey theorem, we solve the Hamilton equations whenever possible. In order to give explicit solutions, we consider the particular case in which the fields are defined on a $2$-disk. Finally, we study the Fock quantization of the system and discuss the quantum edge observables and states.