论文标题
部分可观测时空混沌系统的无模型预测
On the expected number of real roots of polynomials and exponential sums
论文作者
论文摘要
已知的正交随机均匀的真实多项式系统的预期实际投影根数量等于Bézout数字的平方根。通过正交基团的产物不变的随机多均匀系统而闻名类似的结果。在本说明中,这些结果概括为某些稀疏多项式系统的家族,而没有正交不变性。
The expected number of real projective roots of orthogonally invariant random homogeneous real polynomial systems is known to be equal to the square root of the Bézout number. A similar result is known for random multi-homogeneous systems, invariant through a product of orthogonal groups. In this note, those results are generalized to certain families of sparse polynomial systems, with no orthogonal invariance assumed.