论文标题

自动颅底缺陷重建和植入物建模的深度学习框架

Deep Learning-based Framework for Automatic Cranial Defect Reconstruction and Implant Modeling

论文作者

Wodzinski, Marek, Daniol, Mateusz, Socha, Miroslaw, Hemmerling, Daria, Stanuch, Maciej, Skalski, Andrzej

论文摘要

这项工作的目的是为个性化的颅骨缺陷重建和植入物建模提出一种健壮,快速和全自动的方法。 我们建议使用修改后的U-NET体系结构进行两步基于深度学习的方法,以执行缺陷重建,并采用专门的迭代程序来改善植入物几何形状,然后自动生成用于3D打印的模型。我们提出了一个基于不完美的图像注册组合组合不同数据集的案例的跨案例增强。我们进行有关不同增强策略的消融研究,并将其与其他最先进的方法进行比较。 我们评估了与MICCAI会议共同组织的自动植物2021挑战期间引入的三个数据集。我们使用骰子和边界骰子系数以及Hausdorff距离进行定量评估。平均骰子系数,边界骰子系数和Hausdorff距离的95%分别为0.91、0.94和1.53 mm。我们通过在混合现实中的3-D打印和可视化进行额外的定性评估,以确认植入物的实用性。 我们提出了一条完整的管道,使一个人能够创建准备3D打印的颅内植入物模型。所描述的方法是该方法的广泛扩展版本,该版本在所有自动植物2021挑战任务中都获得了第一名。我们自由发布源代码,即与打开的数据集一起,使结果完全可复制。颅骨缺陷的自动重建可能会使制造个性化的植入物在较短的时间内进行制造个性化植入物,从而允许一个人在给定的干预期间直接执行3-D打印过程。此外,我们显示了混合现实中缺陷重建的可用性,这可能会进一步减少手术时间。

The goal of this work is to propose a robust, fast, and fully automatic method for personalized cranial defect reconstruction and implant modeling. We propose a two-step deep learning-based method using a modified U-Net architecture to perform the defect reconstruction, and a dedicated iterative procedure to improve the implant geometry, followed by automatic generation of models ready for 3-D printing. We propose a cross-case augmentation based on imperfect image registration combining cases from different datasets. We perform ablation studies regarding different augmentation strategies and compare them to other state-of-the-art methods. We evaluate the method on three datasets introduced during the AutoImplant 2021 challenge, organized jointly with the MICCAI conference. We perform the quantitative evaluation using the Dice and boundary Dice coefficients, and the Hausdorff distance. The average Dice coefficient, boundary Dice coefficient, and the 95th percentile of Hausdorff distance are 0.91, 0.94, and 1.53 mm respectively. We perform an additional qualitative evaluation by 3-D printing and visualization in mixed reality to confirm the implant's usefulness. We propose a complete pipeline that enables one to create the cranial implant model ready for 3-D printing. The described method is a greatly extended version of the method that scored 1st place in all AutoImplant 2021 challenge tasks. We freely release the source code, that together with the open datasets, makes the results fully reproducible. The automatic reconstruction of cranial defects may enable manufacturing personalized implants in a significantly shorter time, possibly allowing one to perform the 3-D printing process directly during a given intervention. Moreover, we show the usability of the defect reconstruction in mixed reality that may further reduce the surgery time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源