论文标题
Spoofgan:合成指纹欺骗图像
SpoofGAN: Synthetic Fingerprint Spoof Images
论文作者
论文摘要
指纹欺骗检测的主要局限性是缺乏公开可用的大规模指纹欺骗数据集,这一问题因围绕生物识别数据的隐私和安全性而增加了问题而加剧了问题。此外,大多数最先进的欺骗检测算法都依赖于在大量培训数据存在下表现最佳的深网。这项工作旨在证明合成(现场和欺骗)指纹的实用性在为这些算法提供足够的数据时提供足够的数据,以在培训有限的公开可用的真实数据集中训练时,可以提高指纹欺骗检测算法的性能。首先,我们提供了修改最先进的生成体系结构以综合高质量的现场和欺骗指纹的方法的详细信息。然后,我们提供定量和定性分析,以验证模仿真实数据样本分布的合成指纹的质量。我们展示了合成实时和欺骗指纹在训练深层网络的指纹欺骗检测中的实用性,与单独培训实际数据相比,这大大提高了三个不同评估数据集的性能。最后,我们证明,在使用合成数据增强训练数据集时,只有25%的原始(真实)数据集需要获得类似的检测性能。
A major limitation to advances in fingerprint spoof detection is the lack of publicly available, large-scale fingerprint spoof datasets, a problem which has been compounded by increased concerns surrounding privacy and security of biometric data. Furthermore, most state-of-the-art spoof detection algorithms rely on deep networks which perform best in the presence of a large amount of training data. This work aims to demonstrate the utility of synthetic (both live and spoof) fingerprints in supplying these algorithms with sufficient data to improve the performance of fingerprint spoof detection algorithms beyond the capabilities when training on a limited amount of publicly available real datasets. First, we provide details of our approach in modifying a state-of-the-art generative architecture to synthesize high quality live and spoof fingerprints. Then, we provide quantitative and qualitative analysis to verify the quality of our synthetic fingerprints in mimicking the distribution of real data samples. We showcase the utility of our synthetic live and spoof fingerprints in training a deep network for fingerprint spoof detection, which dramatically boosts the performance across three different evaluation datasets compared to an identical model trained on real data alone. Finally, we demonstrate that only 25% of the original (real) dataset is required to obtain similar detection performance when augmenting the training dataset with synthetic data.