论文标题
来自单数分节的超电势
Superpotentials from Singular Divisors
论文作者
论文摘要
我们研究了欧几里得D3-BRANES包装除数$ d $ in Calabi-yau Erientifold型IIB字符串理论的压缩。维滕(Witten)根据结构的共同体来计数零模式的计数,当时$ \ mathcal {o} _d $在$ d $时都适用,但我们认为,calabi-yau三倍的有效分裂通常在理性的曲线上具有奇异性。我们将Fermion零模式的计数概括为此类奇异的除数,从结构的共同体学$ \ overline {d} $ d $ $ d $的结构捆绑$ \ MATHCAL {O} _ {\ overline {d}} $。我们通过详细介绍通过翻牌过渡来解开奇点的紧凑性来确定这一点,从而对归一化过程进行物理化身。从分析上继续通过拖鞋继续超级电球,我们发现其正常化的奇异除数可以促进超级电位:具体来说,$ h^{\ bulter} _ {+} _ {+} $ h^{\ bullet} _ { - }(\ Mathcal {o} _ {\ overline {d}})=(0,0,0,0)$给出了足够的贡献条件。我们提出的示例具有无限的许多同构几何阶段,并具有相应的无限单层单组$γ$。我们使用$γ$对有效分隔线的动作来确定具有无限多发电机的确切有效锥体。由此产生的非扰动超电势是雅各比·塞塔(Jacobi Theta)函数,其模块化对称性表明存在涉及分裂体积反转的强效耦合二元性。
We study Euclidean D3-branes wrapping divisors $D$ in Calabi-Yau orientifold compactifications of type IIB string theory. Witten's counting of fermion zero modes in terms of the cohomology of the structure sheaf $\mathcal{O}_D$ applies when $D$ is smooth, but we argue that effective divisors of Calabi-Yau threefolds typically have singularities along rational curves. We generalize the counting of fermion zero modes to such singular divisors, in terms of the cohomology of the structure sheaf $\mathcal{O}_{\overline{D}}$ of the normalization $\overline{D}$ of $D$. We establish this by detailing compactifications in which the singularities can be unwound by passing through flop transitions, giving a physical incarnation of the normalization process. Analytically continuing the superpotential through the flops, we find that singular divisors whose normalizations are rigid can contribute to the superpotential: specifically, $h^{\bullet}_{+}(\mathcal{O}_{\overline{D}})=(1,0,0)$ and $h^{\bullet}_{-}(\mathcal{O}_{\overline{D}})=(0,0,0)$ give a sufficient condition for a contribution. The examples that we present feature infinitely many isomorphic geometric phases, with corresponding infinite-order monodromy groups $Γ$. We use the action of $Γ$ on effective divisors to determine the exact effective cones, which have infinitely many generators. The resulting nonperturbative superpotentials are Jacobi theta functions, whose modular symmetries suggest the existence of strong-weak coupling dualities involving inversion of divisor volumes.